Exercise 71

a. Graph the functions $f(x)=x / 2$ and $g(x)=1+(4 / x)$ together to identify the values of x for which

$$
\frac{x}{2}>1+\frac{4}{x} .
$$

b. Confirm your findings in part (a) algebraically.

Solution

The aim is to find the values of x for which $f(x)>g(x)$.

$$
\begin{gather*}
f(x)>g(x) \\
\frac{x}{2}>1+\frac{4}{x} \\
\frac{x}{2}-\frac{4}{x}-1>0 \\
\frac{x^{2}}{2 x}-\frac{8}{2 x}-\frac{2 x}{2 x}>0 \\
\frac{x^{2}-2 x-8}{2 x}>0 \\
\frac{(x-4)(x+2)}{2 x}>0 \tag{1}
\end{gather*}
$$

The critical points are $x=4, x=-2$, and $x=0$. Partition the number line at these values of x and test a number within each interval to see if inequality (1) is true or false.

Therefore, the values of x for which $f(x)>g(x)$ are

$$
\{x \mid-2<x<0, x>4\} .
$$

This is confirmed in the graph of the two functions versus x.

